SUPER COMPUTERS

Supercomputer

From Wikipedia, the free encyclopedia
"High-performance computing" redirects here. For narrower definitions of HPC, see high-throughput computing and many-task computing. For other uses, see Supercomputer (disambiguation).
 
 
IBM's Blue Gene/P supercomputer at Argonne National Laboratory runs over 250,000 processors using normal data center air conditioning, grouped in 72 racks/cabinets connected by a high-speed optical network
A supercomputer is a computer with a high-level computational capacity compared to a general-purpose computer. Performance of a supercomputer is measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). As of 2015, there are supercomputers which can perform up to quadrillions of FLOPS.
Supercomputers were introduced in the 1960s, made initially, and for decades primarily, by Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies bearing his name or monogram. While the supercomputers of the 1970s used only a few processors, in the 1990s machines with thousands of processors began to appear and, by the end of the 20th century, massively parallel supercomputers with tens of thousands of "off-the-shelf" processors were the norm. Since its introduction in June 2013, China's Tianhe-2 supercomputer is currently the fastest in the world at 33.86 petaFLOPS (PFLOPS), or 33.86 quadrillions of FLOPS.
Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). Throughout their history, they have been essential in the field of cryptanalysis.
Systems with massive numbers of processors generally take one of the two paths: in one approach (e.g., in distributed computing), a large number of discrete computers (e.g., laptops) distributed across a network (e.g., the Internet) devote some or all of their time to solving a common problem; each individual computer (client) receives and completes many small tasks, reporting the results to a central server which integrates the task results from all the clients into the overall solution. In another approach, a large number of dedicated processors are placed in close proximity to each other (e.g. in a computer cluster); this saves considerable time moving data around and makes it possible for the processors to work together (rather than on separate tasks), for example in mesh and hypercube architectures.
The use of multi-core processors combined with centralization is an emerging trend; one can think of this as a small cluster (the multicore processor in a smartphone, tablet, laptop, etc.) that both depends upon and contributes to the cloud.

History

A Cray-1 preserved at the Deutsches Museum
The history of supercomputing goes back to the 1960s, with the Atlas at the University of Manchester and a series of computers at Control Data Corporation (CDC), designed by Seymour Cray. These used innovative designs and parallelism to achieve superior computational peak performance.
The Atlas was a joint venture between Ferranti and the Manchester University and was designed to operate at processing speeds approaching one microsecond per instruction, about one million instructions per second. The first Atlas was officially commissioned on 7 December 1962 as one of the world's first supercomputers  – considered to be the most powerful computer in the world at that time by a considerable margin, and equivalent to four IBM 7094s.
The CDC 6600, released in 1964, was designed by Cray to be the fastest in the world. Cray switched from use of germanium to silicon transistors, which could run very fast, solving the overheating problem by introducing refrigeration. Given that the 6600 outperformed all the other contemporary computers by about 10 times, it was dubbed a supercomputer and defined the supercomputing market when one hundred computers were sold at $8 million each.
Cray left CDC in 1972 to form his own company, Cray Research. Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it became one of the most successful supercomputers in history. The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluorinert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world's fastest until 1990.
While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and Japan, setting new computational performance records. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaFLOPS (GFLOPS) per processor. The Hitachi SR2201 obtained a peak performance of 600 GFLOPS in 1996 by using 2048 processors connected via a fast three-dimensional crossbar network. The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes, communicating via the Message Passing Interface.

Hardware and architecture

 
Approaches to supercomputer architecture have taken dramatic turns since the earliest systems were introduced in the 1960s. Early supercomputer architectures pioneered by Seymour Cray relied on compact innovative designs and local parallelism to achieve superior computational peak performance. However, in time the demand for increased computational power ushered in the age of massively parallel systems.
While the supercomputers of the 1970s used only a few processors, in the 1990s, machines with thousands of processors began to appear and by the end of the 20th century, massively parallel supercomputers with tens of thousands of "off-the-shelf" processors were the norm. Supercomputers of the 21st century can use over 100,000 processors (some being graphic units) connected by fast connections. The Connection Machine CM-5 supercomputer is a massively parallel processing computer capable of many billions of arithmetic operations per second.
Throughout the decades, the management of heat density has remained a key issue for most centralized supercomputers. The large amount of heat generated by a system may also have other effects, e.g. reducing the lifetime of other system components. There have been diverse approaches to heat management, from pumping Fluorinert through the system, to a hybrid liquid-air cooling system or air cooling with normal air conditioning temperatures.
 
 
The CPU share of TOP500
Systems with a massive number of processors generally take one of two paths. In the grid computing approach, the processing power of a large number of computers, organised as distributed, diverse administrative domains, is opportunistically used whenever a computer is available. In another approach, a large number of processors are used in close proximity to each other, e.g. in a computer cluster. In such a centralized massively parallel system the speed and flexibility of the interconnect becomes very important and modern supercomputers have used various approaches ranging from enhanced Infiniband systems to three-dimensional torus interconnects. The use of multi-core processors combined with centralization is an emerging direction, e.g. as in the Cyclops64 system.
As the price, performance and energy efficiency of general purpose graphic processors (GPGPUs) have improved, a number of petaflop supercomputers such as Tianhe-I and Nebulae have started to rely on them. However, other systems such as the K computer continue to use conventional processors such as SPARC-based designs and the overall applicability of GPGPUs in general-purpose high-performance computing applications has been the subject of debate, in that while a GPGPU may be tuned to score well on specific benchmarks, its overall applicability to everyday algorithms may be limited unless significant effort is spent to tune the application towards it. However, GPUs are gaining ground and in 2012 the Jaguar supercomputer was transformed into Titan by retrofitting CPUs with GPUs.
High performance computers have an expected life cycle of about three years.
A number of "special-purpose" systems have been designed, dedicated to a single problem. This allows the use of specially programmed FPGA chips or even custom VLSI chips, allowing better price/performance ratios by sacrificing generality. Examples of special-purpose supercomputers include Belle, Deep Blue, and Hydra, for playing chess, Gravity Pipe for astrophysics, MDGRAPE-3 for protein structure computation molecular dynamics and Deep Crack, for breaking the DES cipher.

Software and system management

Operating systems

Main article: Supercomputer operating systems
Since the end of the 20th century, supercomputer operating systems have undergone major transformations, based on the changes in supercomputer architecture. While early operating systems were custom tailored to each supercomputer to gain speed, the trend has been to move away from in-house operating systems to the adaptation of generic software such as Linux.
Since modern massively parallel supercomputers typically separate computations from other services by using multiple types of nodes, they usually run different operating systems on different nodes, e.g. using a small and efficient lightweight kernel such as CNK or CNL on compute nodes, but a larger system such as a Linux-derivative on server and I/O nodes.
While in a traditional multi-user computer system job scheduling is, in effect, a tasking problem for processing and peripheral resources, in a massively parallel system, the job management system needs to manage the allocation of both computational and communication resources, as well as gracefully deal with inevitable hardware failures when tens of thousands of processors are present.
Although most modern supercomputers use the Linux operating system, each manufacturer has its own specific Linux-derivative, and no industry standard exists, partly due to the fact that the differences in hardware architectures require changes to optimize the operating system to each hardware design.

Software tools and message passing



The parallel architectures of supercomputers often dictate the use of special programming techniques to exploit their speed. Software tools for distributed processing include standard APIs such as MPI and PVM, VTL, and open source-based software solutions such as Beowulf.
In the most common scenario, environments such as PVM and MPI for loosely connected clusters and OpenMP for tightly coordinated shared memory machines are used. Significant effort is required to optimize an algorithm for the interconnect characteristics of the machine it will be run on; the aim is to prevent any of the CPUs from wasting time waiting on data from other nodes. GPGPUs have hundreds of processor cores and are programmed using programming models such as CUDA.
Moreover, it is quite difficult to debug and test parallel programs. Special techniques need to be used for testing and debugging such applications.

SUPER COMPUTERS SUPER COMPUTERS Reviewed by Unknown on 05:34:00 Rating: 5

2 comments:


  1. Very nice posting. Your article us quite informative. Thanks for the same. Our service also helps you to market your products with various marketing strategies, right from emails to social media. Whether you seek to increase ROI or drive higher efficiencies at lower costs, Pegasi Media Group is your committed partner will provide b2bleads.
    IBM Cyclops64 Users


    ReplyDelete

Giant Star Tech. Powered by Blogger.